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ABSTRACT

Due to the discretization of space, the Finite-Difference
method cannot resolve exactly singularities of the electric
and magnetic field at metallic edges. This paper presents
a simple method which reduces the corresponding error
without increasing the numerical efforts. The new edge
formulation is tested by calculating the line parameters
and the field pattern of an homogeneous MMIC coplanar-
waveguide.

MOTIVATION

Purely numerical field-theoretical methods such as the
Finite-Difference, the Finite-Element, or similar approxi-
mations have the advantage that one can handle nearly
arbitrarily shaped structures. On the other hand, areas of
strong local changes in the electromagnetic field like singu-
larities at metallic edges are resolved with poor accuracy
only unless...

...an appropriate number of mesh lines is chosen in
this region which, however, often leads to excessive
computational efforts.

..local mesh refinement is used which enables one to
discretize only the region of interest by a finer mesh

[1].

...the known field behavior is incorporated in the dis-
cretized Maxwell equations, which does not increase
numerical efforts {2,3,4].

Beyond that, empirical approaches have been developed
to treat the problem of field singularities at metallic edges
for special cases.

But most of the methodes based on the incorporation
of the known field behavior as well as those using empirical
approaches can deal only with special geometries, particu-
larly the edges of infinitely thin metallic strips. Compared
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to the general case, this represents a significant simplifica-
tion because electric and magnetic fields here exhibit the
same order of singularity, namely r=/2,

The influence of the error on the overall electromag-
netic behavior depends on how significant the singularity
is for the total pattern. For example, considering a mi-
crostrip the edge effect is less pronounced than in the copla-
nar waveguide (CPW) case, because the CPW electric and
magnetic flelds are concentrated in the slot bounded by
two edges. Therefore, analysing a CPW by the Finite-
Difference (FD) method with a reasonably sized grid one
finds considerable errors, especially with regard to the char-
acteristic line impedance Z;. Our caleulations (8], for in-
stance, lead to about 10-20% deviation in Z, compared to
an analytical formula.

Hence, an improved formulation is required which is
applicable to an arbitrary geometry without increasing the
numerical efforts. In the following, such a method is pre-
sented which also includes different orders of singularities
for magnetic and electric field at the same edge which occur
due to different material properties &, and p,. The validity
of the new edge formulation is checked by calculating the
characteristic line parameters of an homogeneous coplanar
line with MMIC typical dimensions.

‘*p="P2

Er2

Fig. 1: Cross-section of a metallic edge (w2 < ¢ < 27) with
two dielectrics
(&1 = pr<p < &2 — 0 <@ <)
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The description given here is limited to the case of a
metallic edge embedded in a non-homogeneous dielectric
material. This method, however, can also be applied to
other geometries such as dielectric edges.

METHOD

As well known [5], the electric and magnetic fields at
metallic edges show a slightly different order of singularity
if more than one diclectric material is involved (£ ~ r*==1,
H ~ r*m=1) In Fig. 1, an example is given that corre-
sponds to the situation at the lower edge of the metalliza-
tion of a coplanar waveguide.

Employing the Finite-Difference, the whole space is dis-
cretized by a non-equidistant cartesian grid. All material
boundaries are located on mesh lines. The electric and
magnetic field quantities are defined according to Yee’s grid

[6].
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Fig. 2: The Finite-Difference mesh with field quantities
and dimensions.

For the implementation of the edge formulation we con-
sider the second Maxwellian equation in integral form:

}éﬁdé‘:/A(—jwﬁ)dﬁ (1)

Applying the Finite-Difference scheme [7,8] to a grid as
illustrated in Fig. 2 converts the integral along a mesh line
according to the following equation:

Sz bz
[ Ee(e) do L [ By e = Bus (@)
4]

Thus, the FD formulation of eqn (1) reads:
Ex,i ‘5z - Ey,] 6y - Ez,z+1 5413 + Ey,]-)-l 5@/ = _jWBz,kaz‘Sy (3)

If a grid point is located directly at a metallic edge the
electric field behavior along the mesh line perpendicular to
the conducting surface can be assumed to follow an r*~!
law, where v — 1 denotes the order of the singularity. In-
corporating this knowledge into the FD scheme eqn. (2)

reads:

980

b5 52 1—v
[ @ [" B <55—/3> do = B, 8, Kg
Q Q

Zz
X 4)
With I{E = ;—2—1—_-7

It is interesting to note that the correction factor Kg de-
pends solely on the order of the field singularity v and not
on the grid size.

Corresponding to the derivation of Kz one can obtain
also a correction factor Ky for the magnetic field. One
should state that the general numerical properties of the
matrix system to be solved are not changed if Kg and
Ky are considered in the discretized Maxwell equations

(eqn. 3).

The main advantage of this new edge formulation is
that it is based on an analytical derivation. Therefore, it
can be extended to all types of edges where field singu-
larities can occur. It is even possible to consider three-
dimensional corners provided the order of singularity is
known a priori.

RESULTS

In order to show how the improved formulation behaves,
an MMIC coplanar line (see Fig. 3) is investigated.

All boundary conditions of the CPW considered are lo-
cated sufficiently away from the slots to minimize their
influence. To check the validity, results from a confor-
mal mapping technique [9] are included which can con-
sider finite metallization thickness. The error of this an-
alytically based method remains smaller than 1% for the
structures considered. The frequency of operation in the
Finite-Difference method is set to 1GHz to avoid dispersion
due to non-TEM effects.
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Fig. 3: Coplanar waveguide (w = 15um, s = 10um, t = 0
and 3um, &, = 12.9).
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Fig. 4: Characteristic line impedance Z, of a CPW (¢ = 0)
agalnst number of mesh points in the slot.
—: FD-method incorporating the edge condition
- - - : conventional FD-method
- - - : conformal mapping method

The curves presented in the following are plotted as a
function of the number of grid points in the slot region.
Mesh lines in other regions are not varied to obtain com-
parable results. The whole structure is discretized by 20
and 22 steps in vertical direction for ¢ == Qum and ¢t = 3um,
respectively, and by 19 + n(slot) in horizontal direction.

The characteristic line impedance Z, of the CPW is
presented in Fig. 4 for zero metallization thickness. Incor-
porating the edge condition reduces the deviations to about
one half. The remaining error can be mainly contributed to
the discretization itself which is still only an approximation
of the real electromagnetic field. For the special structure
with ¢ = 0, the propagation constant k, does not deviate
from the analytical value.

In Figs. 5 and 6, Z. and k,/ky with ks = w,/fig€o, re-
spectively, are plotted against the number of mesh points in
the slot region for a CPW with a metallization thickness of
t = 3um. The error of the characteristic line impedance is
again reduced by about one half using the new formulation.
In contrast to the structure with ¢ = 0, also the propaga-
tion constant shows a deviation of about 2% between the
conformal mapping and the conventional Finite-Difference
method, which is reduced significantly by the improved for-
mulation.
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Fig. 5: Characteristic line impedance Z, of a CPW
(t = 3um) against number of mesh points in the

slot.
: FD-method incorporating the edge condition
- - - : conventional FD-method
- - - : conformal mapping method
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Fig. 6: Normalized propagation constant k,/ky of a CPW
(t = 3um) against number of mesh points in the
slot (ko = w./Hoko)-

—— : FD-method incorporating the edge condition
- - - : conventional FD-method
-+ - : conformal mapping method



Fig. 7 illustrates the differences in the calculated elec-

tric field between the two FD formulations. Both the field
pattern obtained by the improved Finite-Difference approx-
imation and the vector-field difference are plotted. The re-
sults verify that primarily the field quantities at the edges
are influenced by the new edge formulation.

One should emphasize that under quasi-TEM condi-

tions, the magnetic field symmetry of the upper and the
lower half plane must be symmetrical. This property is
maintained only if different singularity factors for the elec-
tric and magnetic flelds are considered.
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Electric field pattern in the slot region

(n(slot) = 4):

a) FD-method with improved formulation

b) Difference between conventional FD and case a)
magnified by a factor of 10.

CONCLUSIONS

e Numerical field-theoretical methods such as Finite-
Difference or Finite-Element yield errors due to poor
resolution of field singularities at metallic edges. For
the CPW, for instance, this results in typical devia-
tions of 10-20% in the characteristic line impedance.
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o An improved formulation is developed by incorporat-
ing a correction factor depending on the field singu-
larity at the edge. It reduces the errors significantly
by a factor of about one half.

o The concept can be extended to treat also the case
of three-dimensional corners.
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