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ABSTRACT

Due to the discretization of space, the Finite-Difference

method cannot resolve exactly singularities of the electric

and magnet ic field at metallic edges. This paper presents

a simple method which reduces the corresponding error

wit bout increasing the numerical efforts. The new edge

formulation is tested by calculating the line parameters

and the field pattern of an homogeneous MMIC coplanar-

waveguide.

MOTIVATION

Purely numerical field-theoretical methods such as the

Finite-Difference, the Finite-Element, or similar approxi-

mations have the advantage that one can handle nearly

arbitrarily shaped structures. On the other hand, areas of

strong local changes in the electromagnetic field like singu-

larities at metallic edges are resolved with poor accuracy

only unless . ..

. ..an appropriate number of mesh lines is chosen in

this region which, however, often leads to excessive

computational efforts.

. . local mesh refinement is used which enables one to

discretize only the region of interest by a finer mesh

[1].

. . the known field behavior is incorporated in the dis-

cretized Maxwell equations, which does not increase

numerical efforts [2,3,4].

Beyond that, empirical approaches have been developed

to treat the problem of field singularities at metallic edges

for special cases.

But most of the methodes based on the incorporation

of the known field behavior as well as those using empirical

approaches can deal only with special geometries, particu-

larly the edges of infinitely thin metallic strips. Compared
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to the general case, this represents a significant simplifica-

tion because electric and magnetic fields here exhibit the

same order of singularity, namely r–l/2.

The influence of the error on the overall electromag-

netic behavior depends on how significant the singularity

is for the total pattern. For example, considering a mi-

crostrip the edge effect is less pronounced than in the copla-

nar waveguide (CPW) case, because the CPW electric and

magnetic fields are concentrated in the slot bounded by

two edges. Therefore, analysing a CPW by the Finite-

Difference (FD) method with a reasonably sized grid one

finds considerable errors, especially with regard to the char-

act eristic line impedance ZC. Our calculations [8], for in-

stance, lead to about 1O-2O7Odeviation in 2. compared to

an analytical formula.

Hence, an improved formulation is required which is

applicable to an arbitrary geometry without increasing the

numerical efforts. In the following, such a method is pre-

sented which also includes different orders of singularities

for magnetic and elect ric field at the same edge which occur

due to different materiaf properties E, and p,. The validity

of the new edge formulation is checked by calculating the

characteristic line parameters of an homogeneous coplanar

line with MMIC typical dimensions.
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Fig. 1: Cross-section ,of a metallic edge (w2 < P < 27) with

two dielectrics

(&T* +91< p<92;c,2+o<P<Y l).
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The description given here is limited to the case of a

metallic edge embedded in a non-homogeneous dielectric

material. This method, however, can also be applied to

other geometries such as dielectric edges.

METHOD

As well known [5], the electric and magnetic fields at

metallic edges show a slightly different order of singularity

if more than one dielectric material is involved (~ N #E-l,

~ ~ ?-”H-’). In Fig. 1, an example is given that corre-

sponds to the situation at the lower edge of the metalliza-

tion of a coplanar waveguide.

Employing the Finite-Difference, the whole space is dis-

cretized by a non-equidistant cartesian grid. All material

boundaries are located on mesh lines. The electric and

magnetic field quantities are defined according to Yee’s grid

[6].
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Fig. 2: The Finite-Difference mesh with field quantities

and dimensions.

For the implementation of the edge formulation we con-

sider the second Maxwellian equation in integral form:

(1)

Applying the Finite-Difference scheme [7,8] to a grid as

illustrated in Fig. 2 converts the integral along a mesh line

according to the following equation:

~’zE&+iz%/“iL.@#2)dz =E.,,6. (2)
o

Thus, the FD formulation of eqn (1) reads:

If a grid point is located directly at a metallic edge the

electric field behavior along the mesh line perpendicular to

the conducting surface can be assumed to follow an TV–l

law, where v – 1 denotes the order of the singularity. In-

corporating this knowledge into the FD scheme eqn. (2)

reads:

()~’zEz(.r)dz ‘~ ~’a Em(&/2) * ‘-u dz = Ez$g6zK~
o x

(4)
1

with ICE = —~ . 21–U

It is interesting to note that the correction factor KE de-

pends solely on the order of the field singularity v and not

on the grid size.

Corresponding to the derivation of & one can obtain

also a correction factor KH for the magnetic field. One

should state that the general numerical properties of the

matrix system to be solved are not changed if KE and

KH are considered in the discretized Maxwell equations

(eqn. 3).

The main advantage of this new edge formulation is

that it is based on an analytical derivation. Therefore, it

can be extended to all types of edges where field singu-

larities can occur. It is even possible to consider three-

dimensional corners provided the order of singularity is

known a priori.

RESULTS

In order to show how the improved formulation behaves,

an MMIC coplanar line (see Fig. 3) is investigated.

All boundary conditions of the CPW considered are lo-

cated sufficiently away from the slots to minimize their

influence. To check the validity, results from a confor-

mal mapping technique [9] are included which can con-

sider finite metallization thickness. The error of this an-

alytically based method remains smaller than 1Yo for the

structures considered. The frequency of operation in the

Finite-Difference method is set to lGHz to avoid dispersion

due to non-TEM effects.

,S, w,s 1-

Fig. 3: Coplanar waveguide (w = 15prn, s = 10pm, t = O

and 3pm, ET = 12.9).
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Fig. 4: Characteristic line impedance 2. of a CPW (t= O)

against number of mesh points in the slot.

— : FD-method incorporating the edge condition

-- : conventional FD-method
--- : conformal mapping method

The curves presented in the following are plotted as a

function of the number of grid points in the slot region.

Mesh lines in other regions are not varied to obtain com-

parable results. The whole structure is discretized by 20

and 22 steps in vertical direction for t= Opm and t = 3pm,

respectively, and by 19 + n (s lot ) in horizontal direction.

The characteristic line impedance 2. of the CPW is

presented in Fig. 4 for zero met allization thickness. Incor-

porating the edge condition reduces the deviations to about

one half. The remaining error can be mainly contributed to

the discretization itself which is still only an approximation

of the real electromagnetic field. For the special structure

wit h t = O, the propagation constant k= does not deviate

from the analytical value.

In Figs. 5 and 6, ZC and k,lk~ with ko = u@, re-

spectively, are plotted against the number of mesh points in

the slot region for a CPW with a metallization thickness of

t = 3pm. The error of the characteristic line impedance is

again reduced by about one half using the new formulation.

In contrast to the structure with t = O, also the propaga-

tion constant shows a deviation of about 2% between the

conformal mapping and the conventional Finite-Difference

method, which is reduced significantly by the improved for-

mulation.
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Fig. 5: Characteristic line impedance 2. of a CPW

(t = 3pm) against number of mesh points in the

slot .

— : FD-metlhod incorporating the edge condition

.-. : conventional FD-method
-.. : conformal mapping method
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Fig. 6: Normalized propagation constant k, /k. of a CPW

(t = 3~m) against number of mesh points in the

slot (ko = w~-) .

— : FD-method incorporating the edge condition

: conventional FD.method
. . . : conforrnal mapping method



Fig. 7 illustrates the differences in the calculated elec-

tric field between the two FD formulations. Both the field

pattern obtained by the improved Finite-Difference approx-

imation and the vector-field difference are plotted. The re-

sults verify that primarily the field quantities at the edges

are influenced by the new edge formulation.

One should emphasize that under quasi-TEM condi-

tions, the magnetic field symmetry of the upper and the

lower half plane must be symmetrical. This property is

maintained only if different singularity factors for the elec-

tric and magnetic fields are considered.
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Fig. 7:

(n(slot) = 4):

a) FD-method with improved formulation

b) Difference between conventional FD and case a)

magnified by a factor of 10.

CONCLUSIONS

o Numerical field-theoretical methods such as Finite-

Difference or Finite-Element yield errors due to poor

resolution of field singularities at metallic edges. For

the CPW, for instance, this results in typical devia-

tionsof 1O-2O% inthecharacteristic line impedance.

● Unimproved formulation is developed byincorporat-

ing a correction factor depending on the field singu-

larityat the edge, It reduces the errors significantly

by a factor of about one half.

● The concept can be extended to treat also the case

of three-dimensional corners.
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